MOTION OF A PAIR OF BUBBLES IN A LIQUID OF LOW VISCOSITY
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Lagrange's equations are used to examine the long-range interaction

of bubbles. The Lagrange function equals the kinetic energy of an ideal
liquid flowing around a bubble. The generalized external forces include
the upthrust and the viscous resistance to flow around each buble. The
_azimuthal angle is increased by the long-range interaction. The locus
for the relative motion is calculated for: 1) the case in which the
relative speed is fairly high, which allows one to neglect the effects

of viscosity on the collision time, 2) low relative speed, where the
viscous forces determine the motion. Estimates are given for the dif-
ferential effective cross-section for elastic scattering and the
coalescence cross=section.

1. Lagrange equation., Consider a system of two
spherical bubbles whose radii are a;(i = 1,2). The bub~
bles move with speeds u; in a liquid whose kinematic
viscosity is v. It is assumed that the Reynolds number
R = ujai/v satisfies 1 < Ry < 300,

We assume that the velocity distribution is as for an ideal liquid,
in which case we can derive the Laplace equation for the velocity
potential apart from the region r} <ai(ri' = Ir{l, ==k
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in which 1j are the coordinates of the center of the i~th bubble. The
boundary conditions at r{ =g; take the form
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and also
O -0 for r— co. (1.3)

Summation with respect to repeated subscripts is understood. Up
to terms of order (a/r)3 inclusive (a is the mean radius of a bubble and
r is the distance between the centers), we get the following expression
[1] for the potential:
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The Lagrange function for the bubbles in a liquid of low viscosity
-is the kinetic energy of an ideal liquid of viscosity p flowing around
the system of bubbles, and this to terms of order (a/r)3 is

T = 1/37p (aPur® + asfus? — 3713az3u>1“A“3uz‘3). (1.5)

As previously [2], we derive the following expres-
sion for the generalized external forces:
Qf=— 471 pa;*g* — 12 mpa; (ui“ — 2 ajsuj’o'Aﬂa)*
o a (1.6}
Then the Lagrange equation can be written as
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for the bubbles in a low-viscosity liquid up to terms
of order (a/r)? inclusive:
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The right-hand side of (1.8) contains accelerations
due to the short-range force F from the hydrodynamic
interaction, which decreases as r™#, and also due to
long-range forces that decrease as r 9,

We assume u; and u, to be on the order of u, = ga?/
/9v (the speed of steady-state rise in a bubble of mean
radius ), which allows us to estimate the orders of
the accelerations due to F and Q:

ga?\2 q . gad
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Then, if we consider collision in the range
rlag(a)yga/WwP=R/9. (1.10)

we can neglect Q relative to F, and Eqs. (1.8) become
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These equations are also suitable for r/a > R/9,
since in that region the acceleration due to Q is negli-
gible relative to g.

We have shown [2] that the Lagrange equations are
applicable to the motion if the acceleration is such
that the speed alters little in a time a/uo. Let b denote
the distance of closest approach between the paths of
the two particles in the absence of interaction; then
the maximum acceleration due to the pair interaction
is on the order of adul/k*. The velocity change in a
time a/u, then satisfies uya/b)* < u,if (@/b)! < 1.

Equations (1.11) are applicable to the description
of remote pair collisions of bubbles if (a/b)* « 1.
if (a/b)4 « 1.

2. Two bubbles in an ideal liquid, Equations (1.11)
can be replaced by simpler ones if we consider the
collision under conditions such that the effective col-
lision time 7; = b/u- (where u_ is the initial relative
velocity) is negligibly small relative to 7 = a%/18v (the



time of velocity relaxation in response to viscosity
and upthrust). Then the velocity change at a separation
r ~ b is determined mainly by the forces present in
an ideal liquid in the absence of external forces. The
other forces cannot substantially change the speeds
in time 7.

Then the velocity change in the regionr ~ b is
described by
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which are Lagrange’'s equations for two spheres mov-
ing in an ideal liquid in the absence of external forces,
the Lagrange function being defined by (1.5).

The Lagrange function is invariant under the paral-
lel displacement r;j — rj +a, a = const, so the total
momentum is conserved:

Pm = mlulm + m2u2¢1 —
— ¥y (@ + a®) mym, (ui® + wP)Ae,
my = a® [ (a® + a5¥), my = )/ (a:® + a¥). (2.2)
The vector for the relative velocity is

u=1u —ug.

(2.3)

The equation for the change in u is readily derived
from (2.1):

du®
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If (2.2) and (2.3) are solved for u, and u,, neglecting
terms of order (a/r)®, we have

u = P -+ msu, u, = P-—mu.

(2.5)
Upon substitution of (2.5) into the right-hand side of

(2.4), we get an equation for the relative motion of
the bubbles:
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This equation is solved by successive approximation. As zeroth
approximation we take the motion without interaction:

r=b+tu.t 2.7

where b is the vector for the perpendicular velocity u_ of the relative
motion before collision, where the length b of the vector equals the

Fig. 1

distance of closest approach; b lies in a plane passing through the center
of the second bubble and the path of the relative motion of the first
bubble in the absence of interaction.

The first approximation is as follows for the relative velocity u;
after collision:
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The last term in (2.6) is the total derivative with respect to time:
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and so the integral of (2.9) with respect to time with infinite limits is
zero. The integral of (2.8) may conveniently be calculated in'the
coordinate system of Fig., 1, where the z-axis lies along u, the x-axis
is in the plane of u_ and P and is perpendicular to u., and the y-axis
is perpendicular to the x~ .and z-axes. The total momentum P in this
coordinate system has the components

P, = P sin a, P, = Pcosa,

(2.10)
in which « is the angle between u. and P.

The vectors in the plane z = 0 are defined by the complex numbers
x +1y. Then vector b takes the form

h= pel® = 4 “+ iy (2.11)

The integral of (2.8) in this coordinate system becomes:

ai® -+ ag® . ? ¢ a1
g Pisinta o A o —da (2.12)
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It is known from electrostatics that the potential produced by an
unbounded charged filament with unit charge per length (21nb =
= ~2 Relnb) is the real part of the analytic function. The integral of
(2.12) is the field strength with that potential.

The Cauchy-Riemann conditions give us for an arbitrary analytic
function of b = x + iy that
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Then (2.13) gives
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Then the relative velocity is
2 3.1 g8 .
u, =u_+6 {Lsin’?‘ o ﬁ‘—b;ﬁem“’. (2.14)

We see from (2.14) that u4 retains its length {ugi=
={u-| up to terms of order (a/b)® inclusive and is de-
termined by the angle 9 between u, and u. as well as
by the azimuthal angle in the plane z = 0, We can ex-
press 6 and ¢ in terms of the collision parameters:

0 = 6(P /u)? sin® a (a;® + a,%) / b, ¥ = 3. (2.15)

The azimuthal angle alters on account of the non-
central forces during collision, After scattering, par-
ticles enter the angular range ¢ to ¥ + dy from the
initial angular range

Y3, 1/3¢'+1/3d"‘"
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and also
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Integration with respect to ¢ allows one to write the
differential scattering cross-section as

5, Prsin%a 4O
u k)
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The collision turns the vector for the relative veloc-
ity through 6. The velocity component u- of the motion
of the first bubble along the initial direction alters by

mgu_ (1 — cos 0) =1/, myu_ 62 2.17)

The kinetic theory of gases [3] shows that the trans-

port collision cross-section

5 ={(1—cos0)ds (2.18)

defines quantities such as the mean velocity change and
the mean rate of change of energy, and (2.16) shows
that the main contribution to this comes from close
collisions. We assume that (2.15) applies as to order
of magnitude up to 6~ 1 to get
oy ~ Tt(ay F ag)* lupxwl?/u (2.19)

It is of interest to estimate the maximum possible
value of ot. Equations (2.1) apply for b/u_ <« a?/18y,
i.e., for u- » 18vb/a?; [uy X uyl? € ulu?, so

Gt < 1/18 T (a]_- + a’2)zB' (2.20)

Then a nearly isotropic distribution of the relative
velocities can lead to the transport collisional cross-
section; however, oy = 0 for the case of bubbles with
parallel initial velocities, as (2.19) shows,

The bubbles may coalesce if b is small enough,

The probability of this may be expressed via a coales~
cence cross section.

Consider the relative motion in an ideal liguid. It
follows from (2.6) that the projections of the radius
vector r on the plane z = 0 and on the z-axis are
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We calculate the integrals via (2.13) to get
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The condition for (2.22) to be applicable is (a/b)® x
(P/u_)? which is obeyed since u_ » 18vb /&% P~u,
for long-range collisions with b >» a(R/18)2/5. Col- "
lisions at shorter distances in the range a €b ¢
Z a(R/18)2/5 produce scattering through large angles,
while coalescence can occur if b € a.
The locus of (2.22) takes an especially simple form
for the collision of bubbles whose initial velocities
are parallel (a = 0):

iy =be(ttegy), s=ut(tteg),

P v il (‘m 3 mym )
[ G (2.23)
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The coalescence cross section for a relative veloc-
ity of u_ > 18y/a with a = 0 should be somewhat less
than w(a, + az)z, the geometrical collision cross section,

3. Quasi-stationary problem, Consider a collision
for which the effective collision time 7, =b/u is large
relative to the velocity relaxation time 3 = @} /18v(i =
=1, 2) for each bubble, Then the acceleration of a
bubble is

which may be considered negligible relative to the

viscous friction,
The equation of motion for the bubblies can be written

as
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The speed of the i-th bubble differs little from
-27;g%, so (3.1) can be replaced by
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We assume that |a; — @, | <a; a~ay, to get the
equation for the relative motion as

dr® A
- = 2Avg® — 12a313gﬁw— gt

AT = Ty —To, T =1 (3.3)

Equation (3.3) takes the following form in the polar
coordinate system r, 6 (r = |rl, 6is the angle be-
tween g and r):

%'-;— = 2A1g cos 0 -+ 36a317g? %23——1—,
r o _2Avgsin® 4 36a%rge 1228, (3.4)



Then the locus of the relative motion is
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Integration of (3.5) gives a family of loci in terms
of parameter C:

E?sin®0 = C 4+ J C?—sin®0sin 20. (3.6)

Figure 2 shows the integral curves in £, 6 coordi-
nates. Equation (3.5) has a singular point, with the
saddle point at

cos 0y =1/V5, & =2/V5.

The integral curve of (3.6) passes through that
point if

C=C,= ()= 0.76,

The motion along the locus is described
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We see that the bubbles interact in a region whose
dimensions are of order £ = 1, while the duration of
the interaction is on the order of £ = 1. However,
the interaction time increases substantially if C —

— Cy < Cy» and then the locus near g, = arc cos v5/5
is

B ="/1C+ V- Co? + 3/o5Y 5 (8 — 0,)°]

The following is the time taken to traverse the part
of the locus from 6 = 6, to 6 — Af:
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and this has logarithmic divergence as C approaches
Cy.

We thus can assume that the bubbles have an un-
stable coupled state with a finite lifetime.

Equations (3.2) apply if b/u_ » a’/18v, i.e., Aa/a
Aa/a < 9b/Raa r>»a; however, if we suppose
that these equatic..s are suitable for describing the
motion also when r =~ a, collision with direct contact
occurs if

b< by, =ay Co(Ra /A a)h = 0,88 a (Ra | Ad).

The following is the largest cross section leading
to fusion:

s, = na*Co Y Ra | Aa . (3.8)

Fig. 2

Now b < by for these collisions, so we get as follows
from the conditions for (3,2) to apply:

AalaL(OIRY co)R.

Then in this approximation

6, > na*(R | 3Y.

The divergence of the cross section for &g — 0 is
unimportant in calculating the mean number of collisions
in unit time per bubble for a system with an average of
N bubbles per unit volume:

AN 1
Ndt

1 oo ga? RAanYs
5 5N = na* S NCO( - ) ,

(3.9)
if the mean radius of a bubble is 2 and the standard
deviation A a satisfies

Aoja <€ (91 R? Y Co) R.

The rate of coalescence for bubbles similar in
radius is then

AN

——m<3R na v N.

(3.10)

These estimates show that the coalescence probabil-
ity for bubbles of similar radius is on the same order
as the collision probability for bubbles of radius of
order a but differing appreciably in size, which ap-
proach one another at a speed u. ~ ga®/9v, provided
that the coalescence cross section is o, ~ ma?

Weareindebtedto V, G, LevichandV. V., Tolmachev
for discussions,

REFERENCES

1. L. M. Milne-Thomson, Theoretical Hydrody~
namics [Russian translation], Mir, 1964.

2. A, M. Golovin, "Lagrange's equations for a
system of bubbles in a liquid of low viscosity, " PMTF
[Journal of Applied Mechanics and Technical Physics],
no, 6, 1967,

3. S. Chapman and T. Cowling, Mathematical
Theory of Nonuniform Gases [Russian translation],
Izd-vo inostr, lit., 1960,

16 February 1967 Moscow

259



